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Abstract
In a variational formulation of the interaction of a point particle with the spin
0 Schrödinger field in which there is no back-reaction of the particle on the
wave, it is shown that the condition that (a certain subset of the) components
of the current and energy–momentum complexes of the composite take their
quantum values fixes the particle law of motion as that given by de Broglie and
Bohm. No appeal to statistics is made.

PACS number: 03.65.Ta

1. Introduction

Within the community of researchers in de Broglie–Bohm and similar theories, in which
a physical corpuscle pursuing a deterministic spacetime path is added to the wavefunction,
remarkably little attention has been paid to justifying the particle law of motion. This may
seem strange in a theory whose principal conceptual boast is its unambiguous ontology and
whose most basic law presumably represents an actual process. A plethora of theoretically
acceptable laws would surely raise questions about ontological consistency.

The original argument sought a flow that generates the quantal statistical distribution
|ψ(t)|2 given the initial distribution |ψ0|2 [1]. Writing the wavefunction in polar form,
ψ = √

ρ exp(iS/h̄), in the one-body case this led to the proposal

m
dqi(t)

dt
= ∂S(x, t)

∂xi

∣∣∣∣
xi=qi (t)

, i = 1, 2, 3, (1.1)

where m is the mass of the particle. We call this the de Broglie–Bohm law of motion.
Unfortunately, the statistical requirement is too weak to make (1.1) the unique option in

the infinite class of conceivable laws that are compatible with the quantal distribution. This
is not surprising; it is akin to attempting to derive an individual classical molecule’s law of
motion from statistical mechanics. Attempts have been made to restrict the choices. An appeal
to ‘simplicity’ is countered by the existence of other deterministic theories that generate the
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required flow and are otherwise acceptable. Indeed, (1.1) is wrong in the case of the electron
where compatibility with relativity requires a modification of the right-hand side [2] (so that
(1.1) applies only to spin 0). The latter argument proves uniqueness for a flow that generates
the statistical distribution directly and does not exclude flows with a less direct connection
with probability [3].

The question arises whether we can dispense with the statistical argument altogether and
find a physical basis for adopting the de Broglie–Bohm law. Here, we attempt to develop an
alternative method suggested by consideration of the dynamical implications and consistency
of one of the most distinctive aspects of the de Broglie–Bohm theory: that, in acting on the
particle, the guiding wave suffers no back-reaction. This property is crucial if one aims to
avoid disturbing the Schrödinger evolution and hence maintain fully the usual predictions of
quantum mechanics (which are of course entirely independent of the corpuscle variables).
This is not a logical problem as there is no principle of physics that requires such reaction
in all cases but it is nevertheless non-trivial to derive an appropriate dynamical framework
for the particle–wave interaction displaying this feature. The nature of the problem may be
appreciated within the hydrodynamical model, in which the wavefunction is represented by
Eulerian fluid functions and the corpuscle is regarded as a foreign body immersed in the
fluid [4]. In the analogous classical problem, where the mutual actions of the contaminant
and the fluid obey Newtonian principles, it is expected that the body will be passive when,
among other things, its mass is small relative to that of a fluid element [5]. In contrast,
the quantum case presents certain novelties which necessitate a different approach: the
corpuscle moves along the track of a fluid particle and exerts no influence on the fluid,
even at the location of the fluid element it displaces, yet it has a mass far greater than the mass
of the element.

An approach to the back-reaction problem has been given previously in terms of a
canonical formulation of the wave–particle interaction that involves the introduction of
auxiliary fields [6, 7]. This established a Hamiltonian framework for the interaction that
is compatible with the canonical theory of the wave equation and clarified the connection
between the de Broglie–Bohm and Hamilton–Jacobi theories. In that work, the quantum
effects on the particle were attributed to the quantum potential (and the initial conditions
required to generate a quasi-potential flow). Here, we shall solve a somewhat different
and more general problem. We first allow within a canonical theory of interaction a much
broader dependence of the potential on ψ than is exhibited by the quantum potential. It
is then necessary to consider consistency conditions on the wave–particle composite that
constrain its elements and their interactions. For example, when the composite interacts with
another physical system, that system should not ‘see’ more (empirically) than a ‘quantum
system’, i.e., the composite should behave like the bare Schrödinger field (regarded as
a classical field). This can be achieved if key functions characterizing the composite
coincide with the corresponding quantum functions. The functions to which we shall
apply this idea are those for which the composite is the ‘source’ of another system—of
an electromagnetic field through the current it generates, for instance, or of a gravitational
field through its energy–momentum complex (regarded as the low-energy limit of some
relativistic system). On the basis of quite mild constraints, we find as a concomitant
of the conditions for the composite to behave as a ‘quantum system’ that the particle
variables must obey the de Broglie–Bohm law (1.1). Specifically, we require that the
zeroth component of the current and the energy and momentum densities of the composite
coincide with their Schrödinger counterparts. This appears to be the first time that a
justification for the de Broglie–Bohm law has been given that is independent of statistical
arguments.
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2. Quantum wave–particle interaction without particle back-reaction

It is convenient to represent the wavefunction ψ(x, t) by the two real fields ρ(x, t) and S(x, t)

defined in section 1. In the canonical formulation of the theory considered here, the latter are
regarded as coordinates rather than conjugate variables as is usually assumed. We develop the
theory in this way so that including the fields in the particle component of the total Lagrangian
does not modify Schrödinger’s equation through the appearance of a (singular) particle source
term. This approach necessitates the introduction of additional field variables g1(x, t) and
g2(x, t) whose coupled evolution equations do include source terms.

Denoting the particle variables by q(t), the total Lagrangian is

L(q, q̇, ρ, S, t) = 1

2
mq̇2

i − V (q, t) − VQ(ψ(q, t)) +
∫ {

g1

(
ρ̇ +

1

m
∂i(ρ∂iS)

)

+ g2

(
Ṡ +

1

2m
(∂iS)2 + Q + V (x, t)

)}
d3x, (2.1)

where ρ̇ = ∂ρ(x, t)/∂t etc, ∂i ≡ ∂/∂xi , Q = (−h̄2/2m
√

ρ)∂2
i

√
ρ is the quantum potential,

V is the external potential and we represent the quantum effects on the particle through the
scalar potential VQ. The latter is assumed to depend (locally) on ρ and S but not on g1 and
g2 so that Schrödinger’s equation is unmodified. The theory is also assumed to be globally
gauge invariant, which is ensured if VQ is a gauge scalar. The most general dependence of
VQ is then on ρ and its derivatives and on the derivatives of S. Since our principal aim is to
illustrate the method, we shall also assume that VQ is independent of the time derivatives of
the fields in order to avoid complications in defining the canonical energy and momentum of
the composite needed later (the method can in principle be extended to the more general case).

Variation of (2.1) with respect to g1 and g2 yields, respectively, the equations
∂ρ

∂t
+

1

m
∂i(ρ∂iS) = 0 (2.2)

∂S

∂t
+

1

2m
(∂iS)2 + Q + V = 0. (2.3)

These equations are equivalent to the Schrödinger equation if the fields obey conditions
corresponding to those imposed on ψ (single-valuedness, boundedness, etc). Next, varying
with respect to ρ and S gives, in turn,

∂g1

∂t
+

1

m
∂ig1∂iS = δ

δρ(x)

∫
g2(x

′, t)Q(ρ(x ′, t)) dx ′ − δVQ

δρ(x)
(2.4)

∂g2

∂t
− 1

m
∂i(ρ∂ig1 − g2∂iS) = − δVQ

δS(x)
. (2.5)

As expected, the field equations for ρ and S are unmodified by the particle variables whereas
the equations for the auxiliary fields g1 and g2 are (the right-hand sides of (2.4) and (2.5)
involve the function δ(x − q(t)) and its derivatives). In fact, the two auxiliary equations are
equivalent to the Schrödinger equation with a source term, for a ‘wavefunction’ defined in
terms of ρ, S, g1 and g2, and the complex conjugate equation [7]. Finally, varying the variables
q, we obtain

mq̈i = − ∂

∂qi

(V + VQ)

∣∣∣∣
q=q(t)

. (2.6)

The components of the system current (the Noether current associated with the gauge
symmetry) are

J0(x, q, t) = δ(x − q(t)) − g2 (2.7)
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and

Ji(x, q, t) = q̇ iδ(x − q(t)) +
1

m
ρ∂ig1 − 1

m
g2∂iS − �i, (2.8)

where

�i = −∂VQ(x)δ(x − q)

∂(∂S/∂xi)
+

∂

∂xj

∂VQ(x)δ(x − q)

∂(∂2S/∂xi∂xj )
+ · · · . (2.9)

The first (delta-function) terms on the right-hand sides are what we expect for the current due
to a point particle. We shall not need Ji but it is useful to note, using properties of the delta
function together with (2.5) and the result

δVQ

δS(x)
= ∂�i

∂xi

, (2.10)

that the current components indeed obey the continuity equation:
∂J0

∂t
+ ∂iJi = 0. (2.11)

The energy–momentum complex of the composite may be computed from the Lagrangian
(2.1) in the standard way [8]. The only components we shall need are the energy and
momentum densities:

T00 =
(

1

2
mq̇2

i + V (q, t) + VQ(ψ(q))

)
δ(x − q) − g1

(
1

m
∂i(ρ∂iS)

)

− g2

(
1

2m
(∂iS)2 + Q + V

)
(2.12)

T0i = mq̇iδ(x − q) − g1∂iρ − g2∂iS. (2.13)

The total energy
(∫

T00 d3x
)

and momentum
(∫

T0i d3x
)

are conserved under the same
conditions on the external potential as in quantum mechanics [7].

3. Constraints resulting in the de Broglie–Bohm law

In our approach, by the phrase ‘quantum system’ we mean the fields ρ, S, g1 and g2, and the
particle (q). As indicated above, in order to qualify for this appellation certain basic properties
of the composite system must coincide with key ones that are relevant to the conventional
concept of a quantum system. For a given wavefunction obeying (2.2) and (2.3), we seek
constraints on equations (2.4)–(2.6) and their solutions for which the current and energy–
momentum complexes of the composite coincide with the usual values of these quantities for
the Schrödinger field. It turns out that only three components are sufficient to fix the particle
law in terms of ψ .

The Schrödinger field current components are

J0 = ρ, Ji = 1

m
ρ∂iS. (3.1)

Equating J0 with (2.7), therefore, gives

g2 = −ρ + δ(x − q). (3.2)

The energy1 and momentum densities of the Schrödinger field are

T00 = ρ

(
1

2m
(∂iS)2 + Q + V

)
(3.3)

1 The expression we use for the energy density involves one of the infinite class [9] of ‘local kinetic energies’,
all of whose global values agree. This latitude is a partial expression of the freedom to add a divergence to the
energy–momentum complex.
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T0i = ρ∂iS. (3.4)

Setting (3.4) equal to (2.13) and using (3.2) gives

(mq̇i − ∂iS)δ(x − q) = g1∂iρ. (3.5)

Suppose g1 �= 0. Dividing by g1, integrating over all x and using ρ → 0 as xi → ∞, (3.5)
gives

mq̇i − ∂iS|x=q(t) = 0. (3.6)

It follows that g1∂iρ = 0 so g1 = 0 when ∂iρ �= 0. Either way, (3.6) holds and hence we
obtain as a constraint the de Broglie–Bohm equation (1.1). Lastly, we set (3.3) equal to (2.12)
and using (3.2) and (3.6) we obtain

(VQ − Q)δ(x − q) − g1

(
1

m
∂i(ρ∂iS)

)
= 0. (3.7)

A similar argument to that just given implies that VQ = Q and g1ρ̇ = 0. Therefore, expressions
(2.9) and (2.10) vanish. The conditions we have obtained on g1 are independent of the particle
coordinates and we may set this function to any convenient value that obeys these conditions
and the field equations (2.4) and (2.5); a satisfactory choice is g1 = 0.

Given the functions ρ and S, we have derived a set of conditions on g1, g2, q and
VQ. These are consistent constraints on equations (2.4)–(2.6). In particular, the particle
equation (2.6) with VQ = Q is implied by (2.3) and (3.6).

4. Comments

In a proper formulation of the dynamics underlying the proposal of de Broglie and Bohm,
one treats the particle and wavefunction, and other necessary entities, as partners interacting
according to the principles of analytical mechanics (subject to the no back-reaction postulate).
Our aim has been to offer an alternative to the statistical argument for the particle law of
motion by connecting the latter’s justification with the requirement of physical consistency
of the model. In fact, a few reasonable conditions are sufficient to guarantee that the law is
that of de Broglie and Bohm. Actually, since a gradient flow is preserved in time when a
particle dynamics admits an acceleration potential, if we had just established that the quantum
influence on the particle is mediated by the quantum potential the constraint (1.1) needs to be
imposed only on the initial velocity. The de Broglie–Bohm theory is not, therefore, essentially
a ‘first-order’ dynamical theory [7]. The great significance of the kinematical constraint may
be gauged by consideration of the classical limit, defined by negligible quantum potential. For,
although from (2.6) we obtain Newton’s second law for the particle, the shadow of quantum
mechanics persists through the restriction on the initial conditions, a requirement that is alien
to the classical description.

As will be discussed elsewhere, the fluid-dynamical version of this theory shows striking
divergences from classical fluid models. Further areas to examine, in the context of more
general models, are the possibility of deducing information about the particle, such as its
mass, and investigation of particle laws different from that of de Broglie and Bohm (yet
compatible with |ψ |2). In particular, it will be necessary to include a quantum vector potential
in the extension of the theory to spin 1/2 [2]. With reference to the many attempts that have
been made to develop relativistic versions of the trajectory theory, our treatment indicates that
the effort to derive future-causal vectors from the pure quantum formalism may be beside the
point. In the full canonical approach the particle law is additional to the wave law and hence
its properties need not faithfully reproduce those of, e.g., the quantal current. It is known, for
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example, that the covariant quantum formalism may be derived from a non-covariant trajectory
structure [10].
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